2009 CASI AERO'09 Conference 20th Aerospace Structures and Materials Symposium

Feasibility Study of Closed Cavity Bag Moulding (CCBM) for Novel Mouldless Manufacturing of Carbon-Epoxy Composites Presented at CASI AERO'09 Conference

M. Mahendran, S. Pant Graduate Students, Carleton University P. V. Straznicky, J. Laliberté Professors, Carleton University

Canada's Capital University

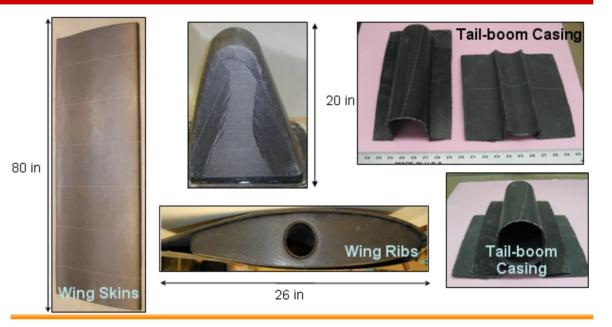
Outline

- Project Overview
- Project Objectives
- Mouldless Manufacturing Techniques
 - Vacuum Assisted Resin Transfer Moulding (VARTM)
 - Closed Cavity Bag Moulding (CCBM)
- VARTM vs. CCBM
- Permeability Evaluation and Results
- Conclusion / Future Work

Project Overview

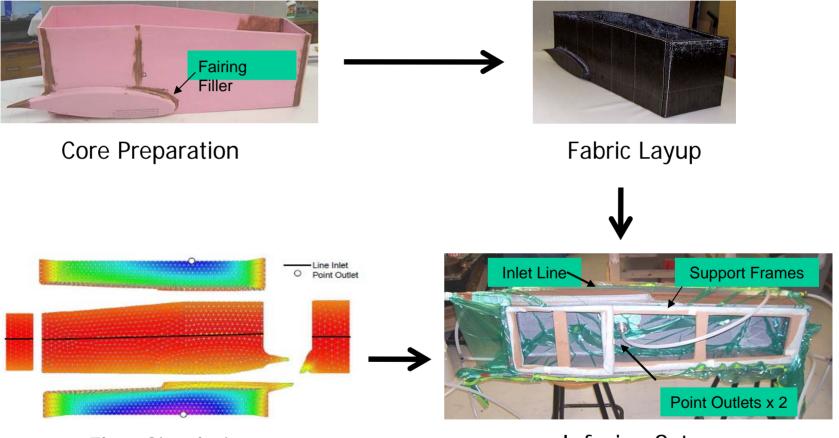
- Manufacturing GeoSurv II, an all composite Unmanned Aerial Vehicle (UAV) for geophysical survey missions
- Industry partner: Sander Geophysics Ltd. (SGL)
 - Specializes in high resolution airborne surveys for petroleum and mineral exploration, and environmental mapping worldwide
- Research partner: National Research Council (NRC)

Wing Span: 16 ft Length: 14 ft Height: 3 ft Target Weight: 200 lbs Power Plant: 2 cylinder, 2-stroke, 30 hp engine


GeoSurv II UAV

Project Objectives

- Develop low cost composite manufacturing processes that are suitable for producing UAV components of varying complexity
 - Vacuum Assisted Resin Transfer Moulding (VARTM)
 - Closed Cavity Bag Moulding (CCBM)
- Apply flow simulation techniques to predict and optimize resin infusion
 - Permeability evaluation
 - Liquid Injection Moulding Simulation (LIMS)


Conventional VARTM Methods

- Low cost
- Disposable materials
- Closed moulding process
- Good part quality
- Good mechanical properties

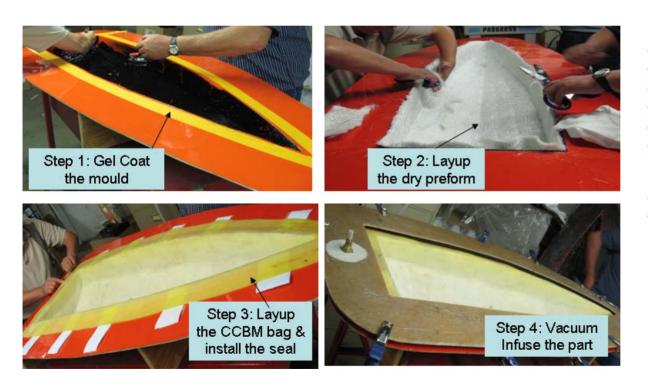
Mouldless VARTM Methodology

Flow Simulation

Infusion Setup

Mouldless VARTM Results

- Mouldless VARTM is a viable option for low cost airframe manufacturing
- Major Issues:
 - Vacuum leaks + air pockets
 - Dimensional tolerances
- Process robustness, repeatability and tolerances need to be improved



Fuselage main frame manufactured by

mouldless VARTM

Closed Cavity Bag Moulding (CCBM)

- Relatively new process popular in the marine industry
- Uses a silicone based elastomeric material to manufacture flexible vacuum bags that are form fitted to the shape of the mould

- Reusable
- Robust
- Less wastage of materials
- Integrated manufacturing

CCBM for Mouldless Manufacturing

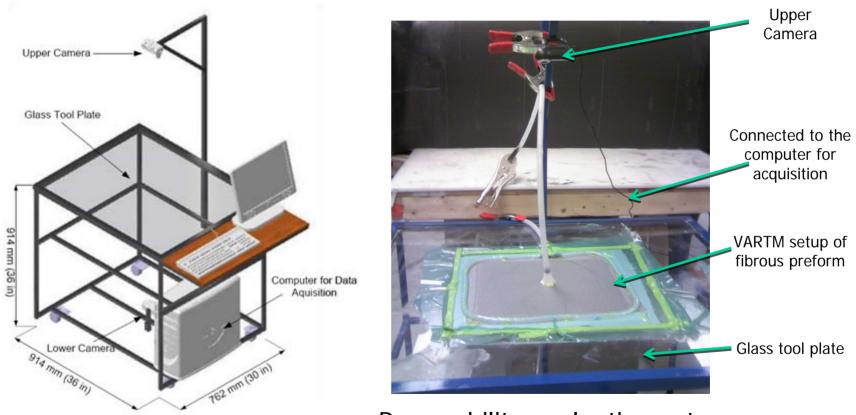
- Major Challenges
 - Relatively high initial costs
 - Need for a sealing mechanism
- Potential Benefits
 - Improved robustness
 - Repeatability
 - Improved dimensional tolerances
 - Tailorable infusion: embedded channels


CCBM Process Development

- Goal:
 - Make CCBM Feasible for mouldless manufacturing
- Approach: Process Value Analysis (PVA)
 - Identify and assess the feasibility of various CCBM techniques
 - Develop a PVA matrix including all process variations
 - PVA Analysis
- CCBM Systems
 - Available in sprayable or brushable forms
 - SWORL[™], Sprayomer Elastomer, Airtech Multibag, Vacuspray and Arctek reusable vacuum bagging systems
 - Arctek reusable vacuum bagging systems was chosen for initial experiments

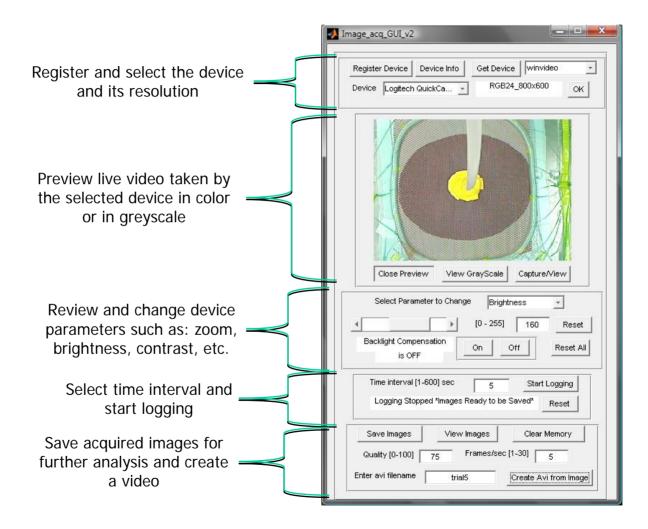
CCBM Process Development

- Sealing mechanism
 - 2 part- extruded silicone seal
 - Using conventional tacky tape
- Channel In Bag (CIB)
 infusion
 - Can be optimized for faster and quality resin infusion
 - Less resin wastage
- Faster resin infusion with distribution medium

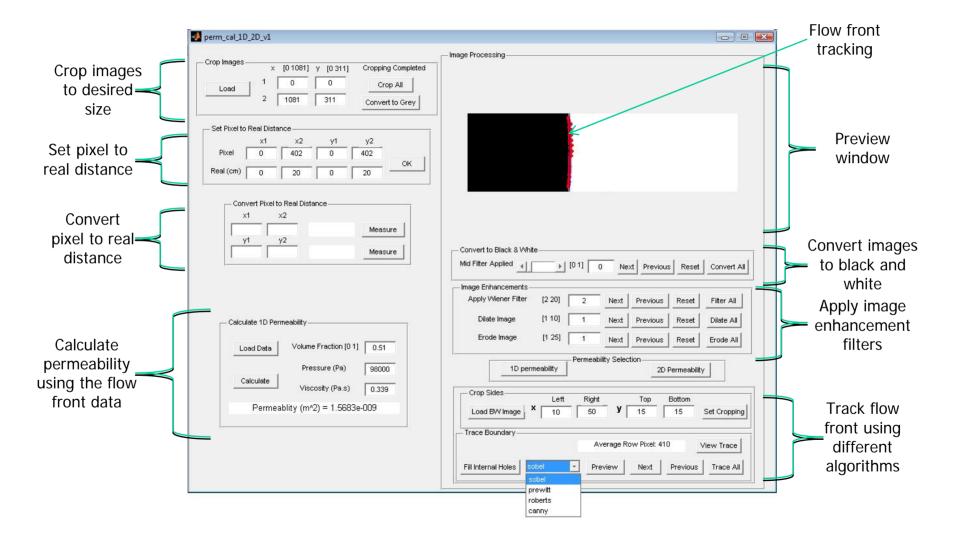


Permeability Evaluation

 Permeability (resistance to flow) is needed to simulate infusion during composite manufacturing



Permeability evaluation setup

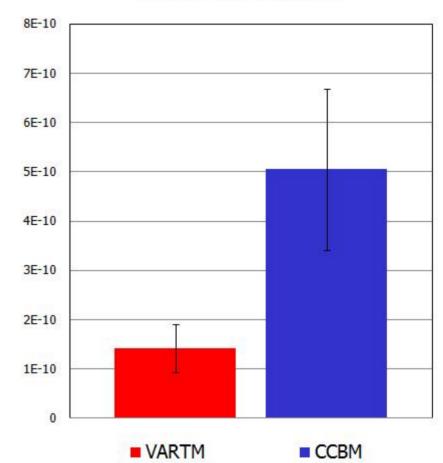

Image Acquisition and Analysis

- An image acquisition graphical user interface (GUI) software was developed in Matlab 2007b
 - Acquisition software is capable of remotely controlling camera parameters, take time lapse pictures at desired intervals, and save it as images and/or create a video
- Acquired images are processed using image analysis GUI software also developed in Matlab 2007b
 - Analysis software is capable of processing the acquired images to detect and track the flow front using various algorithms

Image Acquisition Software

Image Analysis Software

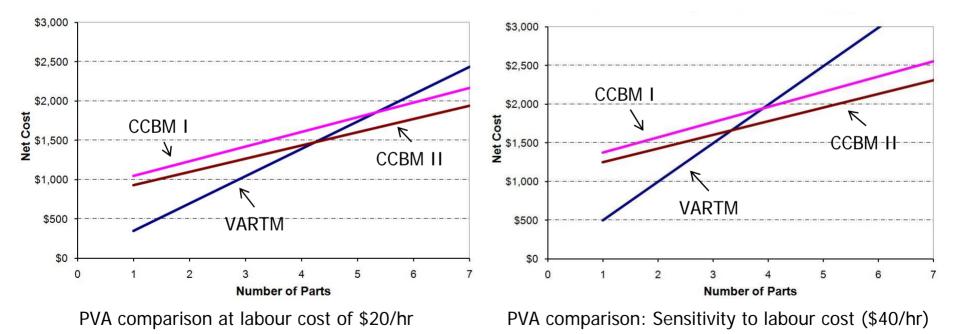
Permeability (VARTM vs. CCBM)


Computer to acquire infusion images

CCBM setup

Permeability Results

- Reinforcement:
 - AGP 370-5HS
- Layup:
 - [(0/90)°, (±45)°]
- Resin:
 - SC 780 Toughened Epoxy
- Vacuum Pressure:
 - 94800 Pa
- Fibre Volume Fraction:
 0.55
- Viscosity:
 - 0.339 Pa.s


CCBM vs. VARTM

Permeability (m²)

CCBM Process Value Analysis

Process Variation	Description
CCBM I	CCBM with extruded silicone seal and distribution medium
CCBM II	CCBM with tacky tape and resin distribution channels embedded in the bag
VARTM	Traditional VARTM with disposable materials

- All costs were estimates based on actual cost of the materials incurred
- All process parameters were converted to labour hours and then assigned a monetary value using the labour rate

Conclusions & Future Work

- CCBM with channel in bag infusion would be most feasible alternative to conventional VARTM for mouldless manufacturing of the fuselage and other complex components
- Future Work:
 - Optimize resin channels for minimum resin consumption and improve infusion quality
 - Manufacture a demonstrator fuselage main frame to illustrate the process capabilities

Acknowledgements

- Joel Maley, Quinn Murphy, David Miyata
 - Carleton University
- Larry Audette
 - President, Prairie Technology Group, Inc.
- Progress Plastics & Compounds Company
- Aaron Miller
 - Composites Canada
- Hexcel Corporation
- National Research Council
- Sander Geophysics Ltd.

QUESTIONS ???